Adaptive fuzzy iterative learning control with initial-state learning for coordination control of leader-following multi-agent systems

نویسندگان

  • Junmin Li
  • Jinsha Li
چکیده

We propose a distributed adaptive fuzzy iterative learning control (ILC) algorithm to deal with coordination control problems in leader-following multi-agent systems in which each follower agent has unknown dynamics and a non-repeatable input disturbance. The ILC protocols are designed with distributed initial-state learning and it is not necessary to fix the initial value at the beginning of each iteration. A fuzzy logical system is used to approximate the nonlinearity of each follower agent. A fuzzy learning component is an important learning tool in the protocol, and combined time-domain and iteration-domain adaptive laws are used to tune the controller parameters. The protocol guarantees that the follower agents track the leader for the consensus problem and keep at a desired distance from the leader for the formation problem on [0, T ]. Simulation examples illustrate the effectiveness of the proposed scheme. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...

متن کامل

Iterative learning control approach for a kind of heterogeneous multi-agent systems with distributed initial state learning

In this paper, leader–follower coordination problems of a kind of heterogeneous multi-agent systems are studied by applying iterative learning control (ILC) scheme in a repeatable control environment. The heterogeneous multi-agent systems are composed of first-order and second-order dynamics in two aspects. The leader is assumed to have second-order dynamics and the trajectories of the leader a...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2014